295 research outputs found

    CDC6 (cell division cycle 6 homolog (S. cerevisiae))

    Get PDF
    Review on CDC6 (cell division cycle 6 homolog (S. cerevisiae)), with data on DNA, on the protein encoded, and where the gene is implicated

    ZBTB7A (zinc finger and BTB domain containing 7A)

    Get PDF
    Review on ZBTB7A (zinc finger and BTB domain containing 7A), with data on DNA, on the protein encoded, and where the gene is implicated

    Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246

    Get PDF
    TP53 mutants (mutp53) are involved in the pathogenesis of most human cancers. Specific mutp53 proteins gain oncogenic functions (GOFs) distinct from the tumor suppressor activity of the wild-type protein. Tumor-associated macrophages (TAMs), a hallmark of solid tumors, are typically correlated with poor prognosis. Here, we report a non-cell-autonomous mechanism, whereby human mutp53 cancer cells reprogram macrophages to a tumor supportive and anti-inflammatory state. The colon cancer cells harboring GOF mutp53 selectively shed miR-1246-enriched exosomes. Uptake of these exosomes by neighboring macrophages triggers their miR-1246-dependent reprogramming into a cancerpromoting state. Mutp53-reprogammed TAMs favor anti-inflammatory immunosuppression with increased activity of TGF-β. These findings, associated with poor survival in colon cancer patients, strongly support a microenvironmental GOF role for mutp53 in actively engaging the immune system to promote cancer progression and metastasis

    Bacterial genotoxins induce T cell senescence

    Get PDF
    Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells—the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence

    Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements

    Get PDF
    Replication fork inactivation can be overcome by homologous recombination, but this can cause gross chromosomal rearrangements that subsequently missegregate at mitosis, driving further chromosome instability. It is unclear when the chromosome rearrangements are generated and whether individual replication problems or the resulting recombination intermediates delay the cell cycle. Here we have investigated checkpoint activation during HR-dependent replication restart using a site-specific replication fork-arrest system. Analysis during a single cell cycle shows that HR-dependent replication intermediates arise in S phase, shortly after replication arrest, and are resolved into acentric and dicentric chromosomes in G2. Despite this, cells progress into mitosis without delay. Neither the DNA damage nor the intra-S phase checkpoints are activated in the first cell cycle, demonstrating that these checkpoints are blind to replication and recombination intermediates as well as to rearranged chromosomes. The dicentrics form anaphase bridges that subsequently break, inducing checkpoint activation in the second cell cycle

    Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis

    Get PDF
    Common fragile sites (cfs) are specific regions in the human genome that are particularly prone to genomic instability under conditions of replicative stress. Several investigations support the view that common fragile sites play a role in carcinogenesis. We discuss a genome-wide approach based on graph theory and Gene Ontology vocabulary for the functional characterization of common fragile sites and for the identification of genes that contribute to tumour cell biology. CFS were assembled in a network based on a simple measure of correlation among common fragile site patterns of expression. By applying robust measurements to capture in quantitative terms the non triviality of the network, we identified several topological features clearly indicating departure from the Erdos-Renyi random graph model. The most important outcome was the presence of an unexpected large connected component far below the percolation threshold. Most of the best characterized common fragile sites belonged to this connected component. By filtering this connected component with Gene Ontology, statistically significant shared functional features were detected. Common fragile sites were found to be enriched for genes associated to the immune response and to mechanisms involved in tumour progression such as extracellular space remodeling and angiogenesis. Our results support the hypothesis that fragile sites serve a function; we propose that fragility is linked to a coordinated regulation of fragile genes expression.Comment: 18 pages, accepted for publication in BMC Bioinformatic

    High RBM3 expression in prostate cancer independently predicts a reduced risk of biochemical recurrence and disease progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High expression of the RNA-binding protein RBM3 has previously been found to be associated with good prognosis in breast cancer, ovarian cancer, malignant melanoma and colorectal cancer. The aim of this study was to examine the prognostic impact of immunohistochemical RBM3 expression in prostate cancer.</p> <p>Findings</p> <p>Immunohistochemical RBM3 expression was examined in a tissue microarray with malignant and benign prostatic specimens from 88 patients treated with radical prostatectomy for localized disease. While rarely expressed in benign prostate gland epithelium, RBM3 was found to be up-regulated in prostate intraepithelial neoplasia and present in various fractions and intensities in invasive prostate cancer. High nuclear RBM3 expression was significantly associated with a prolonged time to biochemical recurrence (BCR) (HR 0.56, 95% CI: 0.34-0.93, <it>p </it>= 0.024) and clinical progression (HR 0.09, 95% CI: 0.01-0.71, <it>p = </it>0.021). These associations remained significant in multivariate analysis, adjusted for preoperative PSA level in blood, pathological Gleason score and presence or absence of extracapsular extension, seminal vesicle invasion and positive surgical margin (HR 0.41, 95% CI: 0.19-0.89, <it>p </it>= 0.024 for BCR and HR 0.06, 95% CI: 0.01-0.50, <it>p = </it>0.009 for clinical progression).</p> <p>Conclusion</p> <p>Our results demonstrate that high nuclear expression of RBM3 in prostate cancer is associated with a prolonged time to disease progression and, thus, a potential biomarker of favourable prognosis. The value of RBM3 for prognostication, treatment stratification and follow-up of prostate cancer patients should be further validated in larger studies.</p

    Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas

    Get PDF
    Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence(1,2). Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies(3). To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma(4,5). We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth

    E2F1 drives chemotherapeutic drug resistance via ABCG2

    Get PDF
    Multidrug resistance is a major barrier against successful chemotherapy, and this has been shown in vitro to be often caused by ATP-binding cassette (ABC) transporters. These transporters are frequently overexpressed in human cancers and confer an adverse prognosis in many common malignancies. The genetic factors, however, that initiate their expression in cancer are largely unknown. Here we report that the major multidrug transporter ABCG2 (BCRP/MXR) is directly and specifically activated by the transcription factor E2F1—a factor perturbed in the majority of human cancers. E2F1 regulates ABCG2 expression in multiple cell systems, and, importantly, we have identified a significant correlation between elevated E2F1 and ABCG2 expression in human lung cancers. We show that E2F1 causes chemotherapeutic drug efflux both in vitro and in vivo via ABCG2. Furthermore, the E2F1–ABCG2 axis suppresses chemotherapy-induced cell death that can be restored by the inhibition of ABCG2. These findings therefore identify a new axis in multidrug resistance and highlight a radical new function of E2F1 that is relevant to tumor therapy

    Prediction of progression in pTa and pT1 bladder carcinomas with p53, p16 and pRb

    Get PDF
    Currently available prognostic tools appear unable to adequately predict recurrence and progression in non muscle-invasive bladder carcinomas. We aimed to assess the prognostic value of immunohistochemical evaluation of the cell cycle markers p53, p16 and pRb. Paraffin blocks were obtained from 78 cases of pTa and pT1 transitional cell carcinomas, for which long-term follow-up was available. Representative sections were stained using antibodies against p53, p16 and pRb. Altered marker expression was found in 45, 17 and 30% of cases, respectively. Concurrent alteration of two or three markers occurred in 19% of cases, and was significantly associated with grade and stage. In univariate survival analysis, the concurrent alteration of any two markers was significantly associated with progression. The greatest risk was produced by alteration of both p53 and p16, which increased the risk of progression by 14.45 times (95% confidence interval (CI) 3.10-67.35). After adjusting for grade and stage, this risk was 7.73 (CI 1.13-52.70). The markers did not generally predict tumour recurrence, except in the 25 pT1 tumours. In these, p16 alteration was associated with a univariate risk of 2.83 (CI 1.01-7.91), and concurrent p53 and p16 alteration with a risk of 9.29 (CI 1.24-69.50). Overall, we conclude that the immunohistochemical evaluation of p53 and p16 may have independent prognostic value for disease progression, and may help guide management decisions in these tumours
    • …
    corecore